Preview

Rheumatology Science and Practice

Advanced search

PROBLEMS OF EPIGENOME IN RHEUMATOID ARTHRITIS

https://doi.org/10.14412/1995-4484-2011-566

Abstract

Rheumatoid arthritis (RA) that is a brilliant representative of the large family of autoimmune diseases remains to be, by and large, a disease that is far from being adequately investigated. This concerns the etiology and pathogenesis of the disease and effective approaches to its treatment. The review gives the data available in the literature on the role of epigenomic mechanisms regulating the functioning of genes in both immunocompetent cells and synovial fibroblasts, the major targets of autoimmune cells. The presence of a few sources of hypomethylated DNA in RA patients suggests that these molecules make a considerable contribution to the pathogenesis of the disease. Furthermore, the found hypermethylation of certain genes, besides the pathogenetic value of this phenomenon, may be used to develop new approaches to treating RA, which are based on the demethylation processes of these genes.

About the Author

V A Kozlov



References

1. <div><p>Davis L.S. The synovial fibroblast in rheumatoid arthritis. Am J Pathol 2003; 162(5): 1399-402.</p><p>Taniguchi K., Kohsaka H., Inoue N. et al. Induction of the p16INK4a senescence gene as new therapeutic strategy for the treatment of rheumatoid arthritis. Nat Med 1999; 5: 760-8.</p><p>Pap T., Franz J.K., Hummel K.M. et al. Activation of synovial fibroblasts in rheumatoid arthritis: lack of Expression of the tumor suppressor PTEN at sites of invasive growth and destruction. Arthr Res 2000; 2: 59-65.</p><p>Franz J.K., Pap T., Hummel K.M. et al. Expression of sentrin, a novel anti-apoptotic molecule at sites of Synovial invasion in rheumatoid arthritis. Arthr Rheum 2000; 43; 599-607.</p><p>Meinecke I., Cinski A., Baier A. et al. Modification of nuclear PML protein by SUMO-1 regulates Fas-in-Duced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc Natl Acad Sci 2007; 104: 5073-8</p><p>Scott B.B., Weisbrot L.M., Greenwood J.D. et al. Rheumatoid arthritis synovial fibriblast and U937 macrophage/monocyte cell line interaction in cartilage degradation. Arthr Rheum 1997; 40: 490-8.</p><p>Maciejewska Rodrigues H., Jungel A., Gay R.E., Gay S. Innate immunity, epigenetics and autoimmunity in rheumatoid arthritis. Mol Immunol 2009; 47(1): 12-8.</p><p>Karousakis E., Gay R.E., Michel B.A. et al. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthr Rheum 2009; 60(12): 3612-22.</p><p>Huber L.C., Stanczyk J., Jungel A., Gay S. Epigenetics in inflammatory rheumatic diseases. Arthr Rheum 2007; 56(11): 3523-31.</p><p>Takami N., Osawa K., Miura Y. et al. Hypermethylation promoter region of DR3, the death receptor gene, in rheumatoid arthritis synovial cells. Arthr Rheum 2006; 54(3): 779-87.</p><p>Karouzakis E., Gay R.E., Gay S., Neidhart M. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat Rev Rheumatol 2009; 5: 266-72.</p><p>Jungel A., Baresova V., Ospelt C. et al. Trichostatin A sensitizes rheumatoid arthritis synovial fibroblasts for TRAIL-induced apoptosis. Ann Rheum Dis 2006; 65: 910-2.</p><p>Ito K., Yamamura S., Essilfie-Quaye S. et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kB suppression. J Exp Med 2006; 203(1): 7-13.</p><p>Boquest A.C., Noer A., Collas P. Epigenetic programming of mesenchymal stem cells from human adipose tissue. Stem Cell Rev 2006; 2: 319-29.</p><p>Wen Z.K., Xu W., Xu L. et al. DNA hypomethylation is crucial for apoptotic DNA to induce systemic lupus erythematosus-like auimmune disease in SLE-non-susceptible mice. Rheumatology 2007; 46: 1796-80</p><p>Harmon C.E., Portanova J. Drug-induced lupus: clinical and serological studies. Clin Rheum Dis 1982; 8: 121-35.</p><p>Schwab J., Illges H. Silensing of CD21 expression in synovial lymphocytes is independent of methylation of the CD21 promoter CpG island. Rheumatology 2001; 20(1): 133-7.</p><p>Annunziata F., Cosmi L., Liotta F. et al. Type 17 helper cells - origin, features and possible role in rheumatic disease. Nat Rev Rheumatol 2009; 5: 325-31.</p><p>Hmadcha A., Bedoya F.J., Sobrino F., Pintabo E. Methylation-dependent gene silencing induced by interleukin lb via nitric oxide production. J Exp Med 1999; 190(11): 1595-603.</p><p>Hashimoto K., Oreffo R.O.C., Gibson M.B. et al. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthr Rheum 2009; 60(11): 3303-13.</p><p>Nile C.J., Read R.C., Akil M. et al. Methylation status of a single CpG site in the IL-6 promoter to IL-6 messenger RNA levels and rheumatoid arthritis. Arthr Rheum 2008; 58(9): 2686-93.</p><p>Fu L.H., Cong В., Zhen Y.F. et al. Methylation status of the IL-10 gene promoter in the peripheral blood mononuclear cells of rheumatoid arthritis patients. Yi Chuan 2007; 29(11): 1357-61.</p><p>Hodge D.R., Peng В., Cherry J.C. et al. Interleukin 6 support the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res 2005; 65(11): 4673-82.</p><p>Meng F., Wehbe-Janek H., Smith H., Patel T. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 2008; 27(3): 378-86.</p><p>Wilson A.G. Epigenetic regulation of gene expression in the inflammatory response in the inflammatory response and relevance to common diseases. J Periodontal 2008; 79(8): 1514-9.</p><p>A.M., Yang X.O., Dong C. Chromatin remodeling of interleukin-17 (IL-17)-IL17F cytokine gene locus during inflammatory helper T cell differentiation. J Biol Chem 2007; 282(9): 5969-72.</p><p>Han G.M., O'Neil-Andersen N., Zurier R.B., Lawrence D.A. CD4 CD25 high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol 2008; 253(1-2): 92-101</p><p>Oh S., Rankin A.L., Caton A.J. CD4+CD25+ regulatory T cells in autoimmune arthritis. Immunol Rev 2010; 233: 97-111.</p><p>Zheng Q., Xu Y., Liu Y. et al. Induction of Foxp3 demethylation increases regulatory CD4+CD25+ T cells and prevents the occurrence of diabetes in mice. J Mol Med 2009; 87; 1191-205.</p><p>Zanin-Zhorov A., Ding Y., Kumari S. et al. Protein kinase С-theta mediates nega- tive feedback on regulatory T cell function. Science 2010; 328: 372-6.</p><p>Floess S., Freyer J., Siewert C. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biology. 2007; 5(2): 169-78.</p><p>Lee C.-G., Sahoo A., Im S.-H. Epigenetic regulation of cytokine gene expression in T lymphocytes. Yonsei Med 2009; 50(3): 322-30.</p><p>Su R.C., Becker A.B., Kozyrskyi A.L., Hayglass K.T. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol 2008; 121(1): 57-63.</p><p>Tao R., de Zoeten E.F., Ozkaynak E. et al. Deacethlase inhibition promotes the the generation and function of regulatory T cells. Nat Med 2007; 13(11): 1299-307.</p><p>Bowen H., Kelly A., Lee T., Lavender P. Control of cytokine gene transcription in Thl and Th2 cells. Clin Exper Allergy 2008; 38: 1422-31.</p><p>Kim E.-G., Shin H.-J., Lee C.G. et al. DNA methylation and not allelic variation regulates STAT6 expression in human T cells. Clin Exp Med 2009; 10.1007/sl0238- 009-0083-8.</p><p>Krieg A.M. The role of CpG motifs in innate immunity. Curr Opin Immunol 2000; 12(1): 35-43. Collins L.V., Hajizadeh S., Holme E. et al. Endogenously oxidized mitochondrial DNA induce in vivo and in vitro inflammatory responses. J Leukoc Biol 2004; 75(6): 995-1000.</p><p>Zhang Q., Raoof M., Chen Y. et al. Circulating mitochondrial DAMPs cause inflammatory responses to Injury. Nature 2019; 464: 104-8.</p><p>Вейко H.H., Шубаева H.O., Иванова C.M. и др. ДНК сыворотки крови больных ревматоидным артритом значительно обогащена фрагментами рибосомных повторов, содержащих иммуностимулирующие CpG-мотивы. Бюл. экспер. биол. мед. 2006; 142(9): 282-5.</p><p>Не В., Qiao X., Cerutti A. CpG DNA induces IgG class switch DNA recombination by activating human В cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol 2004; 173: 4479-91.</p><p>Deng G.M., Tarkowski A. The role of bacterial DNA in septic arthritis. Int J Mol Med 2000; 6(1): 29-33.</p><p>Zeuner R.A., Ishii К.J., Lizak M.J. et al. Reduction of CpG-induced arthritis by suppressive oligodeoxynucleotides. Arthr Rheum 2002; 46(8): 2219-24.</p><p>Krieg A.M. CPG motifs in bacterial DNA and their immune effects. Ann Rev Immunol 2002; 20: 709-60.</p><p>Gaipl U.S., Kuhn A., Sheriff A. et al. Clearance of apoptotic cells in human SLE. Curr Dir Autoimmune 2006; 9: 173-87.</p><p>Dieker J.W., Fransen J.H., van Bavel C.C. et al. Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosis. Arthr Rheum 2007; 56(6): 1921-33.</p><p>Balada E., Ordi-Ros J., Vilardell-Tarres M. Molecular mechanisms mediated by human endogenous retroviruses (HERVs) in autoimmunity. Rev Med Virol 2009; 19(5): 273-86.</p><p>Kokkonen H., Soderstrom I., Rocklov J. et al. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthr Rheum 2010; 62(2): 383-91</p><p>Ma X., Ezzeldin H.H., Diasio R.B. Histone deacetylase inhibitors: current status and overview of Recent clinical trials. Drug 2009; 69(14): 1911-34.</p><p>Wiech N.L., Fisher J.F., Helquist P. et al. Inhibition of histone deacetylases: a pharmacological approach to the treatment of non-cancer disorders. Curr Top Med Chem 2009; 9(3): 257-71.</p></div><br />


Review

For citations:


Kozlov V.A. PROBLEMS OF EPIGENOME IN RHEUMATOID ARTHRITIS. Rheumatology Science and Practice. 2011;49(3):9-13. (In Russ.) https://doi.org/10.14412/1995-4484-2011-566

Views: 896


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)