Preview

Научно-практическая ревматология

Расширенный поиск

Болезнь Стилла взрослых: новые горизонты

https://doi.org/10.47360/1995-4484-2021-643-663

Полный текст:

Аннотация

Болезнь Стилла у детей (системный ювенильный идиопатический артрит – ЮИА) и у взрослых (болезнь Стилла взрослых -БСВ) рассматриваются как системные аутовоспалительные заболевания неизвестной этиологии в основе которых лежат сходные иммунопатогенетические механизмы, связанные с генетически детерминированными нарушениями механизмов врожденного иммунитета. БСВ в первые описана 50 лет назад английским ревматологом Эриком Байотерсом (Eric George Lapthorne Bywaters). Молекулярную основу иммунопатогенеза БСВ составляет активация врожденного иммунитета, связанная NLRP3 инфламмасома-зависимыми механизмами воспаления, характеризуется гиперпродукцией «провоспалительных» цитокинов – интерлейкина (ИЛ) 1 и ИЛ-18, индуцирующих синтез других провоспалительных медиаторов воспаления. Представлен обзор новых данных, касающийся механизмов иммунопатологии, клинического полиморфизма, лабораторных биомаркеров и возможностей фармакотерапии БСВ. Особое внимание уделено перспективам применения моноклональных антител к ИЛ-1β – канакинумаб. Рассматриваются проблемы, связанные с общностью клинико-лабораторных нарушений, патогенетических механизмов и фармакотерапии БСВ и коронавирусной болезни 2019 (COVID-19)

Об авторах

Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

115522, Москва, Каширское шоссе, 34а;
119991, Москва, ул. Трубецкая, 8, стр. 2


Конфликт интересов:

ЕЛН: бюро докладчиков AbbVie, Eli Lilly, Janssen, Novartis, Pfizer, R-Pharm; ЕФ: исследовательские гранты BMS, Eli Lilly, Novartis, Roche; гонорары за консультации AbbVie, BMS, Eli Lilly, Gilead Sciences, Galapagos, Novartis, Roche, Sanofi, Sobi; бюро докладчиков AbbVie, BMS, Eli Lilli, MSD, Novartis, Roche, Sanofi, Sobi.



Е. Файст
Helios Clinic Vogelsang-Gommern, Otto-von-Guericke University Magdeburg
Россия

Department of Rheumatology, cooperation partner  

Magdeburg, Germany, Sophie-v.-Boetticher-Straße 1, 39245 Gommern


Конфликт интересов:


ЕЛН: бюро докладчиков AbbVie, Eli Lilly, Janssen, Novartis, Pfizer, R-Pharm; ЕФ: исследовательские гранты BMS, Eli Lilly, Novartis, Roche; гонорары за консультации AbbVie, BMS, Eli Lilly, Gilead Sciences, Galapagos, Novartis, Roche, Sanofi, Sobi; бюро докладчиков AbbVie, BMS, Eli Lilli, MSD, Novartis, Roche, Sanofi, Sobi.



Список литературы

1. McGonagle D, McDermott MF. A Proposed Classification of the Immunological Diseases. PLoS Med 2006; 3: e297. doi:10.1371/journal.pmed.0030297

2. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-595. doi: 10.1038/s41584-021-00652-9

3. Doria A, Zen M, Bettio S, et al. Autoinflammation and autoimmunity: Bridging the divide. Autoimmun Rev. 2012;12(1):22-30. doi: 10.1016/j.autrev.2012.07.018

4. Насонов ЕЛ, Александрова ЕН, Новиков АА. Аутоиммунные ревматические заболевания – проблемы иммунопатологии и персонифицированной терапии. Вестник РАМН 2015;70(2):169-182

5. Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12(1):14-24. doi: 10.1038/nrrheum.2016.166.

6. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15(10):612-32. doi: 10.1038/s41584-019-0277-8

7. Насонов Е.Л. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2018;56:19-27. https://doi.org/10.14412/1995-4484-2018-19-27.

8. Mitrovic S, Fautrel B. Clinical Phenotypes of Adult-Onset Still’s Disease: New Insights from Pathophysiology and Literature Findings. J Clin Med. 2021;10(12):2633. doi: 10.3390/jcm10122633.

9. Ter Haar NM, Jansen MHA, Frenkel JF, Vastert SJ. How autoinflammation may turn into autoimmune inflammation: Insights from monogenetic and complex IL-1 mediated auto-inflammatory diseases. Clin Immunol. 2020;219:108538. doi: 10.1016/j.clim.2020.108538.

10. Kessel C, Hedrich CM, Foell D. Innately Adaptive or Truly Autoimmune: Is There Something Unique About Systemic Juvenile Idiopathic Arthritis? Arthritis Rheumatol. 2020;72(2):210-219. doi: 10.1002/art.41107

11. Still GF. On a form of chronic joint disease in children. Med Chir Trans 1897;80:47-60.

12. Bywaters EG. Still’s disease in the adult. Ann Rheum Dis. 1971;30(2):121-33. doi: 10.1136/ard.30.2.121

13. Betrains A, Staels F, Schrijvers R, Meyts I, Humblet-Baron S, et al. Systemic autoinflammatory disease in adults. Autoimmun Rev. 2021;20(4):102774. doi: 10.1016/j.autrev.2021.102774.

14. Nigrovic PA, Colbert RA, Holers VM, Ozen S, Ruperto N, et al. Biological classification of childhood arthritis: roadmap to a molecular nomenclature. Nat Rev Rheumatol. 2021;17(5):257-269. doi: 10.1038/s41584-021-00590-6.

15. Nirmala N, Brachat A, Feist E, Blank N, Specker C, et al. Geneexpression analysis of adult-onset Still’s disease and systemic juvenile idiopathic arthritis is consistent with a continuum of a single disease entity. Pediatr Rheumatol Online J. 2015;13:50. doi: 10.1186/s12969-015-0047-3.

16. Inoue N, Shimizu M, Tsunoda S, Kawano M, Matsumura M, Yachie A. Cytokine profile in adult-onset Still’s disease: Comparison with systemic juvenile idiopathic arthritis. Clin Immunol. 2016;169:8-13. doi: 10.1016/j.clim.2016.05.010.

17. Segú-Vergés C, Coma M, Kessel C, Smeets S, Foell D, Aldea A. Application of systems biology-based in silico tools to optimize treatment strategy identification in Still’s disease. Arthritis Res Ther. 2021;23(1):126. doi: 10.1186/s13075-021-02507-w.

18. Feist E, Mitrovic S, Fautrel B. Mechanisms, biomarkers and targets for adult-onset Still’s disease. Nat Rev Rheumatol. 2018;14(10):603-618. doi: 10.1038/s41584-018-0081-x.

19. Brown D, Trowsdale J, Allen R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens. 2004;64(3):215-25. doi: 10.1111/j.0001-2815.2004.00290.x

20. Wang M, Liu M, Jia J, Shi H, Teng J, et al. Association of the Leukocyte Immunoglobulin-like Receptor A3 Gene With Neutrophil Activation and Disease Susceptibility in Adult-Onset Still’s Disease. Arthritis Rheumatol. 2021;73(6):1033-1043. doi: 10.1002/art.41635.

21. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019;50(4):778-795. doi: 10.1016/j.immuni.2019.03.012.

22. Jung JY, Kim JW, Suh CH, Kim HA. Roles of Interactions Between Toll-Like Receptors and Their Endogenous Ligands in the Pathogenesis of Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still’s Disease. Front Immunol. 2020;11:583513. doi: 10.3389/fimmu.2020.583513.

23. Rosário C, Zandman-Goddard G, Meyron-Holtz EG, D’Cruz DP, Shoenfeld Y. The hyperferritinemic syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med. 2013;11:185. doi: 10.1186/1741-7015-11-185.

24. Colafrancesco S, Alessandri C, Conti F, Priori R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmun Rev. 2020;19(7):102573. doi: 10.1016/j.autrev.2020.102573.

25. Ruscitti P, Berardicurti O, Di Benedetto P, Cipriani P, Iagnocco A, Shoenfeld Y, Giacomelli R. Severe COVID-19, Another Piece in the Puzzle of the Hyperferritinemic Syndrome. An Immunomodulatory Perspective to Alleviate the Storm. Front Immunol. 2020;11:1130. doi: 10.3389/fimmu.2020.01130.

26. McGonagle D, Ramanan AV, Bridgewood C. Immune cartography of macrophage activation syndrome in the COVID-19 era. Nat Rev Rheumatol. 2021;17(3):145-157. doi: 10.1038/s41584-020-00571-1.

27. Hu Q, Shi H, Zeng T, Liu H, Su Y, et al. Increased neutrophil extracellular traps activate NLRP3 and inflammatory macrophages in adult-onset Still’s disease. Arthritis Res Ther. 2019;21(1):9. doi: 10.1186/s13075-018-1800-z.

28. Ahn MH, Han JH, Chwae YJ, Jung JY, Suh CH, et al. Neutrophil Extracellular Traps May Contribute to the Pathogenesis in Adultonset Still Disease. J Rheumatol. 2019;46(12):1560-1569. doi: 10.3899/jrheum.181058.

29. Jia J, Wang M, Ma Y, Teng J, Shi H, et al. Circulating Neutrophil Extracellular Traps Signature for Identifying Organ Involvement and Response to Glucocorticoid in Adult-Onset Still’s Disease: A Machine Learning Study. Front Immunol. 2020;11:563335. doi: 10.3389/fimmu.2020.563335.

30. Chen DY, Chen YM, Lan JL, Lin CC, Chen HH, Hsieh CW. Potential role of Th17 cells in the pathogenesis of adult-onset Still’s disease. Rheumatology (Oxford). 2010;49(12):2305-12. doi: 10.1093/rheumatology/keq284.

31. Jung JY, Choi B, Sayeed HM, Suh CH, Kim YW, Kim HA, et al. Characteristic patterns of HLA presentation and T cell differentiation in adult-onset Still’s disease. Int J Immunopathol Pharmacol 2018; 32:2058738418791284.doi: 10.1177/2058738418791284.

32. Shimojima Y, Kishida D, Ueno KI, Ushiyama S, Ichikawa T, Sekijima Y. Characteristics of Circulating Natural Killer Cells and Their Interferon-γ Production in Active Adult-onset Still Disease. J Rheumatol. 2019;46(10):1268-1276. doi: 10.3899/jrheum.181192

33. Vandenhaute J, Wouters CH, Matthys P. Natural Killer Cells in Systemic Autoinflammatory Diseases: A Focus on Systemic Juvenile Idiopathic Arthritis and Macrophage Activation Syndrome. Front Immunol. 2020;10:3089. doi: 10.3389/fimmu.2019.03089.

34. Di Cola I, Ruscitti P, Giacomelli R, Cipriani P. The Pathogenic Role of Interferons in the Hyperinflammatory Response on AdultOnset Still’s Disease and Macrophage Activation Syndrome: Paving the Way towards New Therapeutic Targets. J Clin Med. 2021;10(6):1164. doi: 10.3390/jcm10061164.

35. De Benedetti F, Prencipe G, Bracaglia C, Marasco E, Grom AA. Targeting interferon-γ in hyperinflammation: opportunities and challenges. Nat Rev Rheumatol. 2021 Oct 5. doi: 10.1038/s41584-021-00694-z

36. Schett G. Resolution of inflammation in arthritis. Semin Immunopathol. 2019;41(6):675-679. doi: 10.1007/s00281-019-00768-x.

37. Chen DY, Chen YM, Chen HH, Hsieh CW, Lin CC, Lan JL. The associations of circulating CD4+CD25high regulatory T cells and TGF-β with disease activity and clinical course in patients with adult-onset Still’s disease. Connect Tissue Res. 2010;51(5):370-7. doi: 10.3109/03008200903461462.

38. Sun Y, Wang Z, Chi H, Hu Q, Ye J, Liu H, Cheng X, Shi H, Zhou Z, Teng J, Yang C, Su Y. Elevated serum levels of interleukin-10 in adult-onset Still’s disease are associated with disease activity. Clin Rheumatol. 2019;38(11):3205-3210. doi: 10.1007/s10067-019-04642-x.

39. Chi H, Liu D, Sun Y, Hu Q, Liu H, Cheng X, et al. Interleukin-37 is increased in adult-onset Still’s disease and associated with disease activity. Arthritis Res Ther 2018; 20:54.doi: 10.1186/s13075-018-1555-6.

40. Bamidis AD, Koehler P, di Cristanziano V, Rasche K, Demirel B, et al. First manifestation of adult-onset Still’s disease after COVID-19. Lancet Rheumatol. 2021;3(5):e319-e321. doi: 10.1016/S2665-9913(21)00072-2.

41. Leone F, Cerasuolo PG, Bosello SL, Verardi L, Fiori E, et al. Adult-onset Still’s disease following COVID-19 vaccination. Lancet Rheumatol. 2021;3(10):e678-e680. doi: 10.1016/S2665-9913(21)00218-6.

42. Magliulo D, Narayan S, Ue F, Boulougoura A, Badlissi F. Adultonset Still’s disease after mRNA COVID-19 vaccine. Lancet Rheumatol. 2021;3(10):e680-e682. doi: 10.1016/S2665-9913(21)00219-8

43. Jia J, Shi H, Liu M, Liu T, Gu J, Wan L, Teng J, Liu H, Cheng X, Ye J, Su Y, Sun Y, Gong W, Yang C, Hu Q. Cytomegalovirus Infection May Trigger Adult-Onset Still’s Disease Onset or Relapses. Front Immunol. 2019;10:898. doi: 10.3389/fimmu.2019.00898.

44. Chen DY, Chen YM, Chen HH, Hsieh CW, Gung NR, Hung WT, Tzang BS, Hsu TC. Human parvovirus B19 nonstructural protein NS1 activates NLRP3 inflammasome signaling in adult-onset Still’s disease. Mol Med Rep. 2018;17(2):3364-3371. doi: 10.3892/mmr.2017.8275.

45. Tomaras S, Goetzke CC, Kallinich T, Feist E. Adult-Onset Still’s Disease: Clinical Aspects and Therapeutic Approach. J Clin Med. 2021;10(4):733. doi: 10.3390/jcm10040733

46. Efthimiou P, Kontzias A, Hur P, Rodha K, Ramakrishna GS, Nakasato P. Adult-onset Still’s disease in focus: Clinical manifestations, diagnosis, treatment, and unmet needs in the era of targeted therapies. Semin Arthritis Rheum. 2021;51(4):858-874. doi: 10.1016/j.semarthrit.2021.06.004.

47. Муравьев ЮВ, Лебедева ВВ. Болезнь Стилла взрослых в настоящее время. Научно-практическая ревматология. 2017;55(3):272-276. https://doi.org/10.14412/1995-4484-2017-272-276.

48. Mitrovic S, Feist E, Fautrel B. Adult-Onset Still`s disease. R Cimaz (ed). Periodic and non-periodic fevers, rare diseases of the immune system. htpps://doi.org/10.1007/978-3-030-19055-2_6. Springer Nature Switzerland AG 2020.p 93-132.

49. Bilgin E, Hayran M, Erden A, Armağan B, Sarı A, et al. Proposal for a simple algorithm to differentiate adult-onset Still’s disease with other fever of unknown origin causes: a longitudinal prospective study. Clin Rheumatol. 2019;38(6):1699-1706. doi: 10.1007/s10067-019-04455-y. Erratum in: Clin Rheumatol. 2019 Feb 19;:

50. Maria AT, Le Quellec A, Jorgensen C, Touitou I, Rivière S, Guilpain P. Adult onset Still’s disease (AOSD) in the era of biologic therapies: dichotomous view for cytokine and clinical expressions. Autoimmun Rev. 2014;13(11):1149-59. doi: 10.1016/j.autrev.2014.08.032.

51. Fujii T, Nojima T, Yasuoka H, Satoh S, Nakamura K, et al. Cytokine and immunogenetic profiles in Japanese patients with adult Still’s disease. Association with chronic articular disease. Rheumatology (Oxford). 2001;40(12):1398-404. doi: 10.1093/rheumatology/40.12.1398

52. Ichida H, Kawaguchi Y, Sugiura T, Takagi K, Katsumata Y, et al. Clinical manifestations of Adult-onset Still’s disease presenting with erosive arthritis: Association with low levels of ferritin and Interleukin-18. Arthritis Care Res (Hoboken). 2014;66(4):642-6. doi: 10.1002/acr.22194.

53. Berardicurti O, Conforti A, Iacono D, Pantano I, Caso F, et al. Dissecting the clinical heterogeneity of adult-onset Still’s disease, results from a multi-dimensional characterisation and stratification. Rheumatology (Oxford). 2021 Jan 6:keaa904. doi: 10.1093/rheumatology/keaa904

54. Mollaeian A, Chen J, Chan NN, Nizialek GA, Haas CJ. Adult onset Still’s disease in the elderly: a case-based literature review. BMC Rheumatol. 2021;5(1):12. doi: 10.1186/s41927-021-00183-6. Erratum in: BMC Rheumatol. 2021 May 18;5(1):29.

55. Chen DY, Lan JL, Lin FJ, Hsieh TY. Proinflammatory cytokine profiles in sera and pathological tissues of patients with active untreated adult onset Still’s disease. J. Rheumatol. 2004;31:2189–2198.

56. Colina M, Zucchini W, Ciancio G, Orzincolo C, Trotta F, Govoni M. The evolution of adult-onset Still disease: an observational and comparative study in a cohort of 76 Italian patients. Semin Arthritis Rheum. 2011;41(2):279-85. doi: 10.1016/j.semarthrit.2010.12.006

57. Mitrovic S, Fautrel B. Complications of adult-onset Still’s disease and their management. Expert Rev Clin Immunol. 2018;14(5):351-365. doi: 10.1080/1744666X.2018.1465821.

58. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255-2273. doi: 10.1056/NEJMra2026131.

59. Goda K, Kenzaka T, Hoshijima M, Yachie A, Akita H. Adult-onset Still’s disease with macrophage activation syndrome diagnosed and treated based on cytokine profiling: a case-based review. Rheumatol Int. 2020;40(1):145-152. doi: 10.1007/s00296-019-04446-x

60. Chen PK, Chen DY. An Update on the Pathogenic Role of Macrophages in Adult-Onset Still’s Disease and Its Implication in Clinical Manifestations and Novel Therapeutics. J Immunol Res. 2021;2021:8998358. doi: 10.1155/2021/8998358

61. Wang R, Li T, Ye S, Tan W, Zhao C, Li Y, de Bao C, Fu Q. Macrophage activation syndrome associated with adult-onset Still’s disease: a multicenter retrospective analysis. Clin Rheumatol. 2020;39(8):2379-2386. doi: 10.1007/s10067-020-04949-0.

62. Yamaguchi M, Ohta A, Tsunematsu T, Kasukawa R, Mizushima Y, et al. Preliminary criteria for classification of adult Still’s disease. J Rheumatol. 1992;19(3):424-30.

63. Fautrel B, Zing E, Golmard JL, Le Moel G, Bissery A, et al. Proposal for a new set of classification criteria for adult-onset still disease. Medicine (Baltimore). 2002;81(3):194-200. doi: 10.1097/00005792-200205000-00003

64. Lebrun D, Mestrallet S, Dehoux M, Golmard JL, Granger B et al. Validation of the Fautrel classification criteria for adult-onset Still’s disease. Semin Arthritis Rheum. 2018;47(4):578-585. doi: 10.1016/j.semarthrit.2017.07.005

65. Pouchot J, Sampalis JS, Beaudet F, Carette S, Décary F, et al. Adult Still’s disease: manifestations, disease course, and outcome in 62 patients. Medicine (Baltimore). 1991;70(2):118-36. doi: 10.1097/00005792-199103000-00004

66. Ruscitti P, Cipriani P, Masedu F, et al. Adult-onset Still’s disease: evaluation of prognostic tools and validation of the systemic score by analysis of 100 cases from three centers. BMC Med. 2016;14(1):194. doi:10.1186/s12916-016-0738-8

67. Rau M, Schiller M, Krienke S, Heyder P, Lorenz H, Blank N. Clinical manifestations but not cytokine profiles differentiate adult-onset Still’s disease and sepsis. J Rheumatol. 2010;37(11):2369-76. doi: 10.3899/jrheum.100247

68. McInnes IB, Gravallese EM. Immune-mediated inflammatory disease therapeutics: past, present and future. Nat Rev Immunol. 2021;21(10):680-686. doi: 10.1038/s41577-021-00603-1.

69. Robinson WH, Lindstrom TM, Cheung RK, Sokolove J. Mechanistic biomarkers for clinical decision making in rheumatic diseases. Nat Rev Rheumatol. 2013;9(5):267-76. doi: 10.1038/nrrheum.2013.14.

70. Насонов Е.Л. Ревматоидный артрит: проблемы и значение персонифицированной медицины. Терапевтический архив. 2012;84 (5):5-9.

71. Mitrovic S, Fautrel B. New Markers for Adult-Onset Still’s Disease. Joint Bone Spine. 2018;85(3):285-293. doi: 10.1016/j.jbspin.2017.05.011

72. Di Benedetto P, Cipriani P, Iacono D, Pantano I, Caso F, et al. Ferritin and C-reactive protein are predictive biomarkers of mortality and macrophage activation syndrome in adult onset Still’s disease. Analysis of the multicentre Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale (GIRRCS) cohort. PLoS One. 2020;15(7):e0235326. doi: 10.1371/journal.pone.0235326.

73. Ha YJ, Kang EJ, Lee SW, Park YB, Lee SK, et al. Serum leucine-rich α2-glycoprotein is a useful biomarker for monitoring disease activity in patients with adult-onset Still’s disease. Scand J Rheumatol. 2015;44(5):399-403. doi: 10.3109/03009742.2015.1016103

74. Kirino Y, Kawaguchi Y, Tada Y, Tsukamoto H, Ota T, et al. Beneficial use of serum ferritin and heme oxygenase-1 as biomarkers in adult-onset Still’s disease: A multicenter retrospective study. Mod Rheumatol. 2018;28(5):858-864. doi: 10.1080/14397595.2017

75. Guo Q, Zha X, Li C, Jia Y, Zhu L, Guo J, et al. Serum calprotectin--a promising diagnostic marker for adult-onset Still’s disease. Clin Rheumatol. 2016;35(1):73-9. doi: 10.1007/s10067-015-3108-6.

76. Kim HA, An JM, Nam JY, Jeon JY, Suh CH. Serum S100A8/A9, but not follistatin-like protein 1 and interleukin 18, may be a useful biomarker of disease activity in adult-onset Still’s disease. J Rheumatol. 2012;39(7):1399-406. doi: 10.3899/jrheum.120079.

77. Kim HA, Han JH, Kim WJ, Noh HJ, An JM, et al. TLR4 Endogenous Ligand S100A8/A9 Levels in Adult-Onset Still’s Disease and Their Association with Disease Activity and Clinical Manifestations. Int J Mol Sci. 2016;17(8):1342. doi: 10.3390/ijms17081342

78. Bae CB, Suh CH, An JM, Jung JY, Jeon JY, Nam JY, et al. Serum S100A12 may be a useful biomarker of disease activity in adult-onset Still’s disease. J Rheumatol. 2014;41(12):2403-8. doi: 10.3899/jrheum.140651

79. Scirè CA, Cavagna L, Perotti C, Bruschi E, Caporali R, Montecucco C. Diagnostic value of procalcitonin measurement in febrile patients with systemic autoimmune diseases. Clin Exp Rheumatol. 2006;24(2):123-8

80. Gowin E, Wysocki J. Limited diagnostic value of procalcitonin in early diagnosis of adult onset Still’s disease. Reumatologia. 2016;54(4):207-211. doi:10.5114/reum.2016.62476

81. Buhaescu I, Yood RA, Izzedine H. Serum procalcitonin in systemic autoimmune diseases--where are we now? Semin Arthritis Rheum. 2010;40(2):176-83. doi: 10.1016/j.semarthrit.2009.10.004

82. Koga T, Sumiyoshi R, Furukawa K, Sato S, Migita K, et al. Interleukin-18 and fibroblast growth factor 2 in combination is a useful diagnostic biomarker to distinguish adult-onset Still’s disease from sepsis. Arthritis Res Ther. 2020;22(1):108. doi: 10.1186/s13075-020-02200-4.

83. Zhang W, Yang T, Zhang H, Xu Y, Yang Q, et al. Biomarker screening and validation for the differentiation of bloodstream infection from adult-onset Still’s disease: A prospective cohort study. Cytokine. 2021;146:155642. doi: 10.1016/j.cyto.2021.155642

84. Kudela H, Drynda S, Lux A, Horneff G, Kekow J. Comparative study of Interleukin-18 (IL-18) serum levels in adult onset Still’s disease (AOSD) and systemic onset juvenile idiopathic arthritis (sJIA) and its use as a biomarker for diagnosis and evaluation of disease activity. BMC Rheumatol. 2019;3:4. doi: 10.1186/s41927-019-0053-z.

85. Priori R, Colafrancesco S, Alessandri C, Minniti A, Perricone C, Iaiani G, Palazzo D, Valesini G. Interleukin 18: a biomarker for differential diagnosis between adult-onset Still’s disease and sepsis. J Rheumatol. 2014;41(6):1118-23. doi: 10.3899/jrheum.130575.

86. Girard C, Rech J, Brown M, Allali D, Roux-Lombard P, et al. Elevated serum levels of free interleukin-18 in adult-onset Still’s disease. Rheumatology (Oxford). 2016;55(12):2237-2247. doi: 10.1093/rheumatology/kew300.

87. Nam SW, Kang S, Lee JH, Yoo DH. Different Features of Interleukin-37 and Interleukin-18 as Disease Activity Markers of Adult-Onset Still’s Disease. J Clin Med. 2021;10(5):910. doi: 10.3390/jcm10050910.

88. Han JH, Suh CH, Jung JY, Ahn MH, Kwon JE, et al. Serum Levels of Interleukin 33 and Soluble ST2 Are Associated with the Extent of Disease Activity and Cutaneous Manifestations in Patients with Active Adult-onset Still’s Disease. J Rheumatol. 2017;44(6):740-747. doi: 10.3899/jrheum.170020.

89. Ghannam K, Zernicke J, Kedor C, Listing J, Burmester GR, et al. Distinct Effects of Interleukin-1β Inhibition upon Cytokine Profile in Patients with Adult-Onset Still’s Disease and Active Articular Manifestation Responding to Canakinumab. J Clin Med. 2021;10(19):4400. doi: 10.3390/jcm10194400.

90. Hoshino T, Ohta A, Yang D, Kawamoto M, Kikuchi M, et al. Elevated serum interleukin 6, interferon-gamma, and tumor necrosis factor-alpha levels in patients with adult Still’s disease. J Rheumatol. 1998;25(2):396-8.

91. Fujii T, Nojima T, Yasuoka H, Satoh S, Nakamura K, et al. Cytokine and immunogenetic profiles in Japanese patients with adult Still’s disease. Association with chronic articular disease. Rheumatology (Oxford). 2001;40(12):1398-404. doi: 10.1093/rheumatology/40.12.1398.

92. Fitzgerald AA, Leclercq SA, Yan A, Homik JE, Dinarello CA. Rapid responses to anakinra in patients with refractory adult-onset Still’s disease. Arthritis Rheum. 2005;52(6):1794-803. doi: 10.1002/art.21061.

93. Willeke P. Potential role of macrophage migration inhibitory factor in adult-onset Still’s disease. Scand J Rheumatol. 2009;38(1):69-71. doi: 10.1080/03009740802179701

94. Zou YQ, Lu LJ, Li SJ, Zeng T, Wang XD, et al. The levels of macrophage migration inhibitory factor as an indicator of disease activity and severity in adult-onset Still’s disease. Clin Biochem. 2008;41(7-8):519-24. doi: 10.1016/j.clinbiochem.2008.01.008.

95. Han JH, Suh CH, Jung JY, Ahn MH, Han MH, et al. Elevated circulating levels of the interferon-γ-induced chemokines are associated with disease activity and cutaneous manifestations in adultonset Still’s disease. Sci Rep. 2017;7:46652. doi: 10.1038/srep46652.

96. Han JH, Suh CH, Jung JY, Nam JY, Kwon JE, Yim H, Kim HA. Association of CXCL10 and CXCL13 levels with disease activity and cutaneous manifestation in active adult-onset Still’s disease. Arthritis Res Ther. 2015;17(1):260. doi: 10.1186/s13075-015-0773-4.

97. Liu Y, Zhang S, Xia CS, Chen J, Fan C. Elevated Granulocyte Colony-stimulating Factor Levels in Patients With Active Phase of Adult-onset Still Disease. J Rheumatol. 2021;48(5):664-668. doi: 10.3899/jrheum.200617.

98. Choi JH, Suh CH, Lee YM, Suh YJ, Lee SK, Kim SS, Nahm DH, Park HS. Serum cytokine profiles in patients with adult onset Still’s disease. J Rheumatol. 2003;30(11):2422-7.

99. Matsui K, Tsuchida T, Hiroishi K, Tominaga K, Hayashi N, Hada T, Higashino K. High serum level of macrophage-colony stimulating factor (M-CSF) in adult-onset Still’s disease. Rheumatology (Oxford). 1999;38(5):477-8. doi: 10.1093/rheumatology/38.5.477

100. Chen YM, Hung WT, Chang WC, Hsieh CW, et al. Genetic Association and Expression Correlation between ColonyStimulating Factor 1 Gene Encoding M-CSF and Adult-Onset Still’s Disease. J Immunol Res. 2020;2020:8640719. doi: 10.1155/2020/8640719.

101. Colafrancesco S, Priori R, Alessandri C, Astorri E, Perricone C, et al. sCD163 in AOSD: a biomarker for macrophage activation related to hyperferritinemia. Immunol Res. 2014;60(2-3):177-83. doi: 10.1007/s12026-014-8563-7.

102. Chen DY, Chen YM, Lin CC, Hsieh CW, Wu YC, Hung WT, et al. The potential role of advanced glycation end products (AGEs) and soluble receptors for AGEs (sRAGE) in the pathogenesis of adult-onset still’s disease. BMC Musculoskelet Disord. 2015;16:111. doi: 10.1186/s12891-015-0569-3.

103. Chen DY, Lan JL, Lin FJ, Hsieh TY. Association of intercellular adhesion molecule-1 with clinical manifestations and interleukin-18 in patients with active, untreated adult-onset Still’s disease. Arthritis Rheum. 2005;53(3):320-7. doi: 10.1002/art.21164.

104. Wang Z, Chi H, Sun Y, Teng J, Feng T, et al. Serum sTREM-1 in adult-onset Still’s disease: a novel biomarker of disease activity and a potential predictor of the chronic course. Rheumatology (Oxford). 2020;59(11):3293-3302. doi: 10.1093/rheumatology/keaa135.

105. Jung JY, Suh CH, Sohn S, Nam JY, Kim HA. Elevated highmobility group B1 levels in active adult-onset Still’s disease associated with systemic score and skin rash. Clin Rheumatol. 2016;35(8):1937-1942. doi: 10.1007/s10067-016-3314-x.

106. Tian R, Chen X, Yang C, Teng J, Qu H, Liu HL. Serum HeparinBinding Protein as a Potential Biomarker to Distinguish AdultOnset Still’s Disease From Sepsis. Front Immunol. 2021;12:654811. doi: 10.3389/fimmu.2021.654811.

107. Chen X, Hu QY, Wang M, Jia J, Teng J, et al. Serum VEGF-C as an evaluation marker of disease activity in adult-onset Still’s disease. Rheumatol Int. 2021 Sep 9. doi: 10.1007/s00296-021-04978-1.

108. Jia J, Yang L, Cao Z, et al. Neutrophil-derived lipocalin-2 in adult-onset Still’s disease: a novel biomarker of disease activity and liver damage. Rheumatology (Oxford). 2021;60(1):304-315. doi:10.1093/rheumatology/keaa368

109. Fujita Y, Yago T, Asano T, Matsumoto H, Matsuoka N, et al. Clinical relevance for circulating cold-inducible RNA-binding protein (CIRP) in patients with adult-onset Still’s disease. PLoS One. 2021;16(8):e0255493. doi: 10.1371/journal.pone.0255493.

110. Fujita Y, Asano T, Matsumoto H, Matsuoka N, Temmoku J, et al. Elevated serum levels of checkpoint molecules in patients with adult Still’s disease. Arthritis Res Ther. 2020;22(1):174. doi: 10.1186/s13075-020-02263-3.

111. Wakabayashi K, Inokuma S, Matsubara E, Onishi K, Asashima H, et al. Serum β2-microglobulin level is a useful indicator of disease activity and hemophagocytic syndrome complication in systemic lupus erythematosus and adult-onset Still’s disease. Clin Rheumatol. 2013;32(7):999-1005. doi: 10.1007/s10067-013-2220-8.

112. Liao TL, Chen YM, Hsieh CW, Chen HH, Lee HC, Hung WT, et al. Upregulation of circulating microRNA-134 in adult-onset Still’s disease and its use as potential biomarker. Sci Rep. 2017;7(1):4214. doi: 10.1038/s41598-017-04086-w.

113. Hu Q, Gong W, Gu J, Geng G, Li T, Tian R, Yang Z, Zhang H, Shao L, Liu T, Wan L, Jia J, Yang C, Shi Y, Shi H. Plasma microRNA Profiles as a Potential Biomarker in Differentiating Adult-Onset Still’s Disease From Sepsis. Front Immunol. 2019;9:3099. doi: 10.3389/fimmu.2018.03099.

114. Zhang M, Xie M, Wang Y, Li J, Zhou J. Combination value of biomarkers in discriminating adult onset Still’s disease and sepsis. Wien Klin Wochenschr. 2021;133(3-4):118-122. doi: 10.1007/s00508-020-01668-z.

115. Liu Y, Xia C, Chen J, Fan C, He J. Elevated circulating pro-inflammatory low-density granulocytes in adult-onset Still’s disease. Rheumatology (Oxford). 2021;60(1):297-303. doi: 10.1093/rheumatology/keaa324.

116. Hsieh CW, Chen YM, Lin CC, Tang KT, Chen HH, et al. Elevated Expression of the NLRP3 Inflammasome and Its Correlation with Disease Activity in Adult-onset Still Disease. J Rheumatol. 2017;44(8):1142-1150. doi: 10.3899/jrheum.161354.

117. Chen PK, Hsieh SL, Lan JL, Lin CC, Chang SH, Chen DY. Elevated Expression of C-Type Lectin Domain Family 5-Member A (CLEC5A) and Its Relation to Inflammatory Parameters and Disease Course in Adult-Onset Still’s Disease. J Immunol Res. 2020;9473497. doi: 10.1155/2020/9473497

118. Shimizu T, Kikuchi-Taura A, Tsuji S, Matsushita M, Ohshima S, Saeki Y. Up-regulation of CD64 Expression on Monocytes in Patients With Active Adult-Onset Still Disease: A Possible Biomarker of Disease Activity. J Clin Rheumatol. 2020;26(2):67-72. doi: 10.1097/RHU.0000000000000931.

119. Sun Y, Wang F, Zhou Z, Teng J, Su Y, et al. Urinary Proteomics Identifying Novel Biomarkers for the Diagnosis of Adult-Onset Still’s Disease. Front Immunol. 2020;11:2112. doi: 10.3389/fimmu.2020.02112

120. Cavalli G, Farina N, Campochiaro C, Baldissera E, Dagna L. Current treatment options and safety considerations when treating adult-onset Still’s disease. Expert Opin Drug Saf. 2020;19(12):1549-1558. doi: 10.1080/14740338.2020.1839411.

121. Ma Y, Meng J, Jia J, Wang M, Teng J, Zhu D, Yang C, Hu Q. Current and emerging biological therapy in adult-onset Still’s disease. Rheumatology (Oxford). 2021;60(9):3986-4000. doi: 10.1093/rheumatology/keab485.

122. Colafrancesco S, Manara M, Bortoluzzi A, Serban T, Bianchi G, et al.; AOSD Consensus Group. Management of adult-onset Still’s disease with interleukin-1 inhibitors: evidence- and consensus-based statements by a panel of Italian experts. Arthritis Res Ther. 2019;21(1):275. doi: 10.1186/s13075-019-2021-9.

123. Mimura T, Kondo Y, Ohta A, Iwamoto M, Ota A, et al. Evidencebased clinical practice guideline for adult Still’s disease. Mod Rheumatol. 2018;28(5):736-757. doi: 10.1080/14397595.2018.1465633.

124. Vastert SJ, Jamilloux Y, Quartier P, Ohlman S, Osterling Koskinen L, Kullenberg T, Franck-Larsson K, Fautrel B, de Benedetti F. Anakinra in children and adults with Still’s disease. Rheumatology (Oxford). 2019;58(Suppl 6):vi9-vi22. doi: 10.1093/rheumatology/kez350.

125. Giacomelli R, Sota J, Ruscitti P, Campochiaro C, Colafrancesco S, et al. The treatment of adult-onset Still’s disease with anakinra, a recombinant human IL-1 receptor antagonist: a systematic review of literature. Clin Exp Rheumatol. 2021;39(1):187-195.

126. Tang S, Li S, Zheng S, Ding Y, Zhu D, Sun C, Hu Y, Qiao J, Fang H. Understanding of cytokines and targeted therapy in macrophage activation syndrome. Semin Arthritis Rheum. 2021;51(1):198-210. doi: 10.1016/j.semarthrit.2020.12.007.

127. Kaneko Y, Kameda H, Ikeda K, Ishii T, Murakami K, et al. Tocilizumab in patients with adult-onset still’s disease refractory to glucocorticoid treatment: a randomised, double-blind, placebocontrolled phase III trial. Ann Rheum Dis. 2018;77(12):1720-1729. doi: 10.1136/annrheumdis-2018-213920.

128. Reihl Crnogaj M, Čubelić D, Babić A, Mayer M, Anić B. Treatment of refractory adult onset Still’s disease with tocilizumab-a single centre experience and literature review. Rheumatol Int. 2020;40(8):1317-1325. doi: 10.1007/s00296-020-04622-4

129. Kaneko Y. Interluekin-6 inhibitors for the treatment of adult-onset Still’s disease. Modern Rheumatol 2021;, roab004, https://doi-org.eres.qnl.qa/10.1093/mr/roab004

130. Ahmadi-Simab K, Lamprecht P, Jankowiak C, Gross WL. Successful treatment of refractory adult onset Still’s disease with rituximab. Ann Rheum Dis. 2006;65(8):1117-1118. doi:10.1136/ard.2005.047621

131. Lee WS, Yoo WH. Rituximab for refractory adult-onset Still’s disease with thrombotic microangiopathy. Rheumatology (Oxford). 2014;53(9):1717-8. doi: 10.1093/rheumatology/keu027

132. Padilla-Ibarra J, Sanchez-Ortiz A, Sandoval-Castro C, RamosRemus C. Rituximab treatment for pulmonary arterial hypertension in adult-onset Still’s disease. Clin Exp Rheumatol. 2013;31(4):657-8.

133. Mohammed R. Anti-CD-20 Therapy in Refractory Adult Still’s Disease. Open J Rheumatol Autoimmune Dis 2012;2 (2): 3-5. doi: 10.4236/ojra.2012.22002.

134. Ostrowski RA, Tehrani R, Kadanoff R. Refractory adult-onset still disease successfully treated with abatacept. J Clin Rheumatol. 2011;17(6):315-7. doi: 10.1097/RHU.0b013e31822c53ad.

135. Quartuccio L, Maset M, De Vita S. Efficacy of abatacept in a refractory case of adult-onset Still’s disease. Clin Exp Rheumatol. 2010;28(2):265-7

136. Hu Q, Wang M, Jia J, Teng J, Chi H, et al. Tofacitinib in refractory adult-onset Still’s disease: 14 cases from a single centre in China. Ann Rheum Dis. 2020;79(6):842-844. doi: 10.1136/annrheumdis-2019-216699.

137. Honda M, Moriyama M, Kondo M, Kumakura S, Murakawa Y. Tofacitinib-induced remission in refractory adult-onset Still’s disease complicated by macrophage activation syndrome. Scand J Rheumatol. 2020;49(4):336-338. doi: 10.1080/03009742.2020.1729405.

138. Kacar M, Fitton J, Gough AK, Buch MH, McGonagle DG, Savic S. Mixed results with baricitinib in biological-resistant adult-onset Still’s disease and undifferentiated systemic autoinflammatory disease. RMD Open. 2020;6(2):e001246. doi: 10.1136/rmdopen-2020-001246.

139. Gabay C, Fautrel B, Rech J, Spertini F, Feist E,et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann Rheum Dis. 2018;77(6):840-847. doi: 10.1136/annrheumdis-2017-212608

140. Kiltz U, Kiefer D, Braun J, Schiffrin EJ, Girard-Guyonvarc’h C, Gabay C. Prolonged treatment with Tadekinig alfa in adult-onset Still’s disease. Ann Rheum Dis. 2020;79(1):e10. doi: 10.1136/annrheumdis-2018-214496

141. Gabr JB, Liu E, Mian S, et al. Successful treatment of secondary macrophage activation syndrome with emapalumab in a patient with newly diagnosed adult-onset Still’s disease: case report and review of the literature. Ann Transl Med. 2020;8(14):887. doi:10.21037/atm-20-3127

142. De Benedetti F, Brogan P, Grom A, Quartier P, Schneider R, et al. Interferon-gamma (IFN-γ) Neutralization with Emapalumab and Time to Response in Patients with Macrophage Activation Syndrome (MAS) Complicating Systemic Juvenile Idiopathic Arthritis (s-JIA) who failed High-Dose Glucocorticoids [abstract]. Arthritis Rheumatol. 2019; 71 (suppl 10). https://acrabstracts.org/abstract/interferon-gamma-ifn-%ce%b3-neutralization-with-emapalumab-and-time-to-response-in-patients-with-macrophage-activation-syndrome-mas-complicating-systemic-juvenile-idiopathic-arthritis-s-jia-who/.

143. Gram H. Preclinical characterization and clinical development of ILARIS(®) (canakinumab) for the treatment of autoinflammatory diseases. Curr Opin Chem. 2016;32:1-9. doi: 10.1016/j.cbpa.2015.12.003.

144. Gram H. The long and winding road in pharmaceutical development of canakinumab from rare genetic autoinflammatory syndromes to myocardial infarction and cancer. Pharmacol Res. 2020;154:104139. doi: 10.1016/j.phrs.2019.01.023.

145. Sun H, Van LM, Floch D, Jiang X, Klein UR, Abrams K, Sunkara G. Pharmacokinetics and Pharmacodynamics of Canakinumab in Patients With Systemic Juvenile Idiopathic Arthritis. J Clin Pharmacol. 2016;56(12):1516-1527. doi: 10.1002/jcph.754

146. Cota-Arce JM, Cota J, De León-Nava MA, Hernández-Cáceres A, Moncayo-Salazar LI, et al.. Efficacy and safety of canakinumab in the treatment of adult-onset Still’s disease: A systematic review. Semin Arthritis Rheum. 2021 Aug 27:S0049-0172(21)00161-X. doi: 10.1016/j.semarthrit.2021.08.007.

147. Sfriso P, Bindoli S, Doria A, Feist E, Galozzi P. Canakinumab for the treatment of adult-onset Still’s disease. Expert Rev Clin Immunol. 2020;16(2):129-138. doi: 10.1080/1744666X.2019.1707664.

148. Насонов ЕЛ. Применение канакинумаба при болезни Стилла взрослых. Научно-практическая ревматология. 2018;56:35-40. https://doi.org/10.14412/1995-4484-2018-35-40.

149. Kontzias A., Efthimiou P. The use of Canakinumab, a novel IL-1beta long-acting inhibitor, in refractory adult-onset Still’s disease. Semin Arthritis Rheum. 2012;42(2):201-5. doi: 10.1016/j.semarthrit.2012.03.004.

150. Banse C, Vittecoq O, Benhamou Y, Gauthier-Prieur M, Lequerré T, Lévesque H. Reactive macrophage activation syndrome possibly triggered by canakinumab in a patient with adult-onset Still’s disease. Joint Bone Spine. 2013;80(6):653-5. doi: 10.1016/j.jbspin.2013.04.011.

151. Eriksson P, Jacobs C, Söderkvist P. A patient with a phenotype of adult-onset still disease, but a genotype typical of cryopyrin-associated periodic fever syndrome. J Rheumatol. 2013;40(9):1632-3. doi: 10.3899/jrheum.130325

152. Barsotti S, Neri R, Iacopetti V, d’Ascanio A, Talarico R, Tripoli A, Bombardieri S. Successful treatment of refractory adult-onset still disease with canakinumab: a case report. J Clin Rheumatol. 2014;20(2):121. doi: 10.1097/RHU.0000000000000082.

153. Lo Gullo A, Caruso A, Pipitone N, Macchioni P, Pazzola G, Salvarani C. Canakinumab in a case of adult onset still’s disease: efficacy only on systemic manifestations. Joint Bone Spine. 2014;81(4):376-7. doi: 10.1016/j.jbspin.2013.12.011.

154. Rossi-Semerano L, Fautrel B, Wendling D, Hachulla E, Galeotti C, Semerano L, Touitou I, Koné-Paut I; MAIL1 (Maladies Autoinflammatoires et Anti-IL-1) study Group on behalf of CRI (Club Rhumatisme et Inflammation). Tolerance and efficacy of off-label anti-interleukin-1 treatments in France: a nationwide survey. Orphanet J Rare Dis. 2015;10:19. doi: 10.1186/s13023-015-0228-7

155. Colafrancesco S, Priori R, Valesini G, Argolini L, Baldissera E, et al. Response to Interleukin-1 Inhibitors in 140 Italian Patients with Adult-Onset Still’s Disease: A Multicentre Retrospective Observational Study. Front Pharmacol. 2017;8:369. doi: 10.3389/fphar.2017.00369.

156. Feist E, Quartier P, Fautrel B, Schneider R, Sfriso P, et al. Efficacy and safety of canakinumab in patients with Still’s disease: exposure-response analysis of pooled systemic juvenile idiopathic arthritis data by age groups. Clin Exp Rheumatol. 2018;36(4):668-675.

157. Schwartz C, Taylor A, Zaidi Z. Expand the differential…think beyond rheumatoid arthritis. BMJ Case Rep. 2018;2018:bcr2018225618. doi: 10.1136/bcr-2018-225618.

158. Breillat P, Tourte M, Romero P, Hayem G, Padovano I, Costantino F, Breban M. Interleukin-1 Inhibitors and Dacryoadenitis in Adult-Onset Still Disease. Ann Intern Med. 2018;168(6):455-456. doi: 10.7326/L17-0401.

159. Cavalli G, Tomelleri A, De Luca G, Campochiaro C, Dinarello CA, et al. Efficacy of canakinumab as first-line biologic agent in adult-onset Still’s disease. Arthritis Res Ther. 2019;21(1):54. doi: 10.1186/s13075-019-1843-9.

160. Chamseddin B, Marks E, Dominguez A, Wysocki C, Vandergriff T. Refractory macrophage activation syndrome in the setting of adult-onset Still disease with hemophagocytic lymphohistiocytosis detected on skin biopsy treated with canakinumab and tacrolimus. J Cutan Pathol. 2019;46(7):528-531. doi: 10.1111/cup.13466.

161. Khairoun M, Meynen F, Vercoutere W, Leavis HL. Case series of three adult patients with exceptional clinical presentations of haemophagocytic lymphohistiocytosis. Neth J Med. 2020;78(3):136-141

162. Kedor C, Listing J, Zernicke J, Weiß A, Behrens F, et al. Canakinumab for Treatment of Adult-Onset Still’s Disease to Achieve Reduction of Arthritic Manifestation (CONSIDER): phase II, randomised, double-blind, placebo-controlled, multicentre, investigator-initiated trial. Ann Rheum Dis. 2020;79(8):1090-1097. doi: 10.1136/annrheumdis-2020-217155.

163. Vitale A, Berlengiero V, Sota J, Ciarcia L, Ricco N, Barneschi S, Mourabi M, Lopalco G, Marzo C, Bellisai F, Iannone F, Frediani B, Cantarini L. Real-Life Data on the Efficacy of Canakinumab in Patients with Adult-Onset Still’s Disease. Mediators Inflamm. 2020;8054961. doi: 10.1155/2020/8054961.

164. Laskari K, Tektonidou MG, Katsiari C, Athanassiou P, Dimopoulou D, et al. Outcome of refractory to conventional and/or biologic treatment adult Still’s disease following canakinumab treatment: Countrywide data in 50 patients. Semin Arthritis Rheum. 2021;51(1):137-143. doi: 10.1016/j.semarthrit.2020.10.011.

165. Campochiaro C, Tomelleri A, Giacomo D, Farina N, Baldissera E, Cavalli G, Dagna L. Efficacy of Canakinumab Treatment in Adult-onset Still’s Disease [abstract]. Arthritis Rheumatol. 2019; 71 (suppl 10). https://acrabstracts.org/abstract/efficacy-of-canakinumab-treatment-in-adult-onset-stills-disease/. Accessed October 15, 2021.

166. Nolmellen A, Campochiaro C, de Luca G, Farina N, Baldissera E, et al. Efficacy and safety of canakinumab in adult-onset Still`s disease: a single-center real-life experience. Ann Rheum Dis 2020. doi:10.1136/annrheumdis-2020-eular.2352

167. Vercruysse F, Barnetche T, Lazaro E, Shipley E, Lifermann F, et al. Still’s disease biological treatment strategy may depend on the phenotypic dichotomy. Arthritis Res Ther. 2019;21(1):53. doi: 10.1186/s13075-019-1838-6.

168. Hinze T, Kessel C, Hinze CH, Seibert J, Gram H, Foell D. A dysregulated interleukin-18/interferon-γ/CXCL9 axis impacts treatment response to canakinumab in systemic juvenile idiopathic arthritis. Rheumatology (Oxford). 2021 Feb 10:keab113. doi: 10.1093/rheumatology/keab113

169. Насонов Е.Л. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-132. https://doi.org/10.14412/1995-4484-2020-123-132.

170. Zhou T, Su TT, Mudianto T, Wang J. Immune asynchrony in COVID-19 pathogenesis and potential immunotherapies. J Exp Med. 2020;217(10):e20200674. doi: 10.1084/jem.20200674.

171. Christie MJ, Irving AT, Forster SC, Marsland BJ, Hansbro PM, et al. Of bats and men: Immunomodulatory treatment options for COVID-19 guided by the immunopathology of SARS-CoV-2 infection. Sci Immunol. 2021;6(63):eabd0205. doi: 10.1126/sciimmunol.abd0205.

172. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol. 2021 Aug 9:1–10. doi: 10.1038/s41577-021-00588-x.

173. Rodrigues TS, de Sá KSG, Ishimoto AY, Becerra A, Oliveira S, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2021;218(3):e20201707. doi: 10.1084/jem.20201707.

174. Pan P, Shen M, Yu Z, Ge W, Chen K, et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun. 2021;12(1):4664. doi: 10.1038/s41467-021-25015-6. Erratum in: Nat Commun. 2021;12(1):5306

175. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.

176. Zhou F, Yu T, Du R, Fan G, Liu Y, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3. Erratum in: Lancet. 2020;395(10229):1038.

177. Chen G, Wu D, Guo W, Cao Y, Huang D, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-2629. doi: 10.1172/JCI137244.

178. Abers MS, Delmonte OM, Ricotta EE, Fintzi J, Fink DL, et al. An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight. 2021;6(1):144455. doi: 10.1172/jci.insight.144455.

179. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636-1643. doi: 10.1038/s41591-020-1051-9

180. Lucas C, Wong P, Klein J, Castro TBR, Silva J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584(7821):463-469. doi: 10.1038/s41586-020-2588-y.

181. Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233-1244. doi: 10.1016/S2213-2600(20)30404-5.

182. Kessel C, Vollenberg R, Masjosthusmann K, Hinze C, Wittkowski H, et al. Discrimination of COVID-19 From InflammationInduced Cytokine Storm Syndromes Using Disease-Related Blood Biomarkers. Arthritis Rheumatol. 202;73(10):1791-1799. doi: 10.1002/art.41763.

183. Meng J, Ma Y, Jia J, Wang M, Teng J, et al. Cytokine Storm in Coronavirus Disease 2019 and Adult-Onset Still’s Disease: Similarities and Differences. Front Immunol. 2021 Jan 19;11:603389. doi: 10.3389/fimmu.2020.603389

184. Ruscitti P, Berardicurti O, Di Benedetto P, Cipriani P, Iagnocco A, Shoenfeld Y, Giacomelli R. Severe COVID-19, Another Piece in the Puzzle of the Hyperferritinemic Syndrome. An Immunomodulatory Perspective to Alleviate the Storm. Front Immunol. 2020;11:1130. doi: 10.3389/fimmu.2020.01130.

185. Kondo Y, Kaneko Y, Takei H, Tamai H, Kabata H, et al.; Keio Donner Project. COVID-19 shares clinical features with anti-melanoma differentiation-associated protein 5 positive dermatomyositis and adult Still’s disease. Clin Exp Rheumatol. 2021;39(3):631-638.

186. Guo J, Wang S, Xia H, Shi D, Chen Y, et al. Cytokine Signature Associated With Disease Severity in COVID-19. Front Immunol. 2021;12:681516. doi: 10.3389/fimmu.2021.681516.

187. Satış H, Özger HS, Aysert Yıldız P, Hızel K, Gulbahar Ö, et al. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine. 2021;137:155302. doi: 10.1016/j.cyto.2020.155302.

188. Chen Y, Wang J, Liu C, Su L, Zhang D, et al. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol Med. 2020;26(1):97. doi: 10.1186/s10020-020-00230-x.

189. Thwaites RS, Sanchez Sevilla Uruchurtu A, Siggins MK, Liew F, et al.; ISARIC4C investigators. Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. Sci Immunol. 2021;6(57):eabg9873. doi: 10.1126/sciimmunol.abg9873

190. Caniglia JL, Asuthkar S, Tsung AJ, Guda MR, Velpula KK. Immunopathology of galectin-3: an increasingly promising target in COVID-19. F1000Res. 2020;9:1078. doi: 10.12688/f1000research.25979.2.

191. Bozorgmehr N, Mashhouri S, Perez Rosero E, Xu L, Shahbaz S, et al. Galectin-9, a Player in Cytokine Release Syndrome and a Surrogate Diagnostic Biomarker in SARS-CoV-2 Infection. mBio. 2021;12(3):e00384-21. doi: 10.1128/mBio.00384-21.

192. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. doi: 10.1016/S0140-6736(20)30628-0.

193. Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53(1):19-25. doi: 10.1016/j.immuni.2020.06.017.

194. Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12):e20201129. doi: 10.1084/jem.20201129.

195. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. doi: 10.1172/jci.insight.138999.

196. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) и аутоиммунитет. Научно-практическая ревматология. 2021;59(1):5-30. https://doi.org/10.47360/1995-4484-2021-5-30.

197. Wagner C, Griesel M, Mikolajewska A, Mueller A, Nothacker M, et al.. Systemic corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev. 2021;8(8):CD014963. doi: 10.1002/14651858.CD014963.

198. Geng J, Wang F, Huang Z, Chen X, Wang Y. Perspectives on antiIL-1 inhibitors as potential therapeutic interventions for severe COVID-19. Cytokine. 2021;143:155544. doi: 10.1016/j.cyto.2021.155544.

199. Kyriazopoulou E, Huet T, Cavalli G, Gori A, Kyprianou M, et al.; International Collaborative Group for Anakinra in COVID-19. Effect of anakinra on mortality in patients with COVID-19: a systematic review and patient-level meta-analysis. Lancet Rheumatol. 2021;3(10):e690-e697. doi: 10.1016/S2665-9913(21)00216-2.

200. Generali D, Bosio G, Malberti F, Cuzzoli A, Testa S, et al. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study. Int J Infect Dis. 2021;104:433-440. doi: 10.1016/j.ijid.2020.12.073.

201. Landi L, Ravaglia C, Russo E, Cataleta P, Fusari M, et al. Blockage of interleukin-1β with canakinumab in patients with Covid-19. Sci Rep. 2020;10(1):21775. doi: 10.1038/s41598-020-78492-y.

202. Katia F, Myriam DP, Ucciferri C, Auricchio A, Di Nicola M, et al. Efficacy of canakinumab in mild or severe COVID-19 pneumonia. Immun Inflamm Dis. 2021;9(2):399-405. doi: 10.1002/iid3.400.

203. CORIMUNO-19 Collaborative group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med. 2021:S2213-2600(20)30556-7. doi: 10.1016/S2213-2600(20)30556-7

204. Caricchio R, Abbate A, Gordeev I, Meng J, Hsue PY, et al.; CANCOVID Investigators. Effect of Canakinumab vs Placebo on Survival Without Invasive Mechanical Ventilation in Patients Hospitalized With Severe COVID-19: A Randomized Clinical Trial. JAMA. 2021;326(3):230-239. doi: 10.1001/jama.2021.9508.

205. Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020 Nov;131:110698. doi: 10.1016/j.biopha.2020.110698.

206. Kim MS, An MH, Kim WJ, Hwang T-H. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med. 2020; 17(12): e1003501. https://doi.org/10.1371/journal.pmed.1003501.

207. REMAP-CAP Investigators, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, et al Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med. 2021;384(16):1491-1502. doi: 10.1056/NEJMoa2100433

208. Perrone F, Piccirillo MC, Ascierto PA, Salvarani C, Parrella R, et al.; TOCIVID-19 investigators, Italy. Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial. J Transl Med. 2020;18(1):405. doi: 10.1186/s12967-020-02573-9.

209. McGonagle D, Watad A, Savic S. Mechanistic immunological based classification of rheumatoid arthritis. Autoimmun Rev. 2018;17(11):1115-1123. doi: 10.1016/j.autrev.2018.06.001.

210. Savic S, Mistry A, Wilson AG, Barcenas-Morales G, Doffinger R, Emery P, McGonagle D. Autoimmune-autoinflammatory rheumatoid arthritis overlaps: a rare but potentially important subgroup of diseases. RMD Open. 2017;3(2):e000550. doi: 10.1136/rmdopen-2017-000550.

211. Cuervo A, Sanmartí R, Ramírez J, Castellanos-Moreira R, et al. Palindromic rheumatism: Evidence of four subtypes of palindromic-like arthritis based in either MEFV or rheumatoid factor/ACPA status. Joint Bone Spine. 2021;88(6):105235. doi: 10.1016/j.jbspin.2021.105235

212. Cañete JD, Arostegui JI, Queiró R, Gratacós J, Hernández MV, et al. An unexpectedly high frequency of MEFV mutations in patients with anti-citrullinated protein antibody-negative palindromic rheumatism. Arthritis Rheum. 2007;56(8):2784-8. doi: 10.1002/art.22755.

213. Mitrovic S, Hassold N, Kamissoko A, Rosine N, Mathian A, et al. Adult-onset Still’s disease or systemic-onset juvenile idiopathic arthritis and spondyloarthritis: overlapping syndrome or phenotype shift? Rheumatology (Oxford). 2021 Sep 24:keab726. doi: 10.1093/rheumatology/keab726

214. Rajabally MN, Watermeyer GA, Levin DA. A case of Crohn’s disease complicated by adult onset Still’s disease. J Crohns Colitis. 2010;4(4):475-8. doi: 10.1016/j.crohns.2010.02.010.

215. Katsanos KH, Siozopoulou V, Sigounas D, Tsianos VE, Christodoulou D, et al. Adult-onset Still’s disease preceding Crohn’s disease. J Crohns Colitis. 2013;7(3):e93-8. doi: 10.1016/j.crohns.2012.05.019.

216. Kono M, Oshitani N, Sawa Y, Watanabe K, et al. Crohn’s disease complicated by adult-onset Still’s disease. J Gastroenterol. 2003;38(9):891-5. doi: 10.1007/s00535-002-1167-3.

217. Semiz H, Kobak S. Coexistence of sarcoidosis and adult onset Still disease. Reumatol Clin (Engl Ed). 2019;15(5):e18-e20. doi: 10.1016/j.reuma.2017.04.004.

218. Ganhão S, Ferreira RM, Guerra M, Furtado A, Águeda A, et al. Adult-Onset Still’s Disease in a Patient With a Previous Diagnosis of Acute Sarcoidosis: A Rare Association. J Clin Rheumatol. 2021;27(7):e271. doi: 10.1097/RHU.0000000000001404.

219. Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, et al. Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease. N Engl J Med. 2020;383(27):2628-2638. doi: 10.1056/NEJMoa2026834.

220. Kacar M, Pathak S, Savic S. Hereditary systemic autoinflammatory diseases and Schnitzler’s syndrome. Rheumatology (Oxford). 2019;58(Suppl 6):vi31-vi43. doi: 10.1093/rheumatology/kez448.

221. Bixio R, Rossini M, Giollo A. Efficacy of interleukin-1 blockade in Schnitzler’s syndrome without detectable monoclonal gammopathy: a case-based review. Clin Rheumatol. 2021;40(7):2973-2977. doi: 10.1007/s10067-020-05501-w.

222. Fujita Y, Asano T, Sakai A, Norikawa N, Yamamoto T, et al. A case of Schnitzler’s syndrome without monoclonal gammopathy successfully treated with canakinumab. BMC Musculoskelet Disord. 2021;22(1):257. doi: 10.1186/s12891-021-04120-z.

223. Gusdorf L, Lipsker D. Neutrophilic urticarial dermatosis: an entity bridging monogenic and polygenic autoinflammatory disorders, and beyond. J Eur Acad Dermatol Venereol. 2020;34(4):685-690. doi: 10.1111/jdv.15984.

224. Hartig I, Schroeder JO, Mrowietz U. Neutrophilic urticarial dermatosis (NUD) in probable adult-onset Still disease responding to anakinra. J Clin Rheumatol. 2014;20(2):96-8. doi: 10.1097/RHU.0000000000000078.

225. Narváez Garcia FJ, Pascual M, López de Recalde M, Juarez P, Morales-Ivorra I, et al. Adult-onset Still’s disease with atypical cutaneous manifestations. Medicine (Baltimore). 2017;96(11):e6318. doi: 10.1097/MD.0000000000006318.

226. Verweyen EL, Pickering A, Grom AA, Schulert GS. Distinct Gene Expression Signatures Characterize Strong Clinical Responders Versus Nonresponders to Canakinumab in Children With Systemic Juvenile Idiopathic Arthritis. Arthritis Rheumatol. 2021;73(7):1334-1340. doi: 10.1002/art.41640.

227. Segú-Vergés C, Coma M, Kessel C, Smeets S, Foell D, Aldea A. Application of systems biology-based in silico tools to optimize treatment strategy identification in Still’s disease. Arthritis Res Ther. 2021;23(1):126. doi: 10.1186/s13075-021-02507-w.


Для цитирования:


Насонов Е.Л., Файст Е. Болезнь Стилла взрослых: новые горизонты. Научно-практическая ревматология. 0;:643-663. https://doi.org/10.47360/1995-4484-2021-643-663

Просмотров: 68


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)